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Outline

▸ A brief review of the Diamond model
▸ Basic setup of the Ramsey-Cass-Koopmans (RCK) model

▸ Individuals
▸ Firms
▸ Markets
▸ Timing of events

▸ Competitive equilibrium (Solution) of the RCK model
▸ Firm’s profit maximisation
▸ Individual’s utility maximisation
▸ Market clearing condition
▸ Transition equations and stationary equilibrium
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A Brief Review of the Diamond Model (1 of 6)

▸ Basic setup: OLG model, initial old, future generations
▸ Competitive equilibrium

▸ Firm’s profit maximisation problem

rt = f ′(kt)
wt = f(kt) − f ′(kt)kt

▸ Individual’s utility maximisation problem: Find a young individual’s
saving, st. The solution is then characterised by the Euler equation and
the budget constraints:

u′(c1t)
βu′(c2t+1)

= 1 + rt+1

c1t = wtAt − st and c2t+1 = (1 + rt+1)st
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A Brief Review of the Diamond Model (2 of 6)

▸ For the CRRA utility
st = s(rt+1)wtAt

▸ Market clearing

LD
t = Lt

Kt+1 = Ltst

▸ Equilibrium condition-transition equation for kt combining the
equation that characterise firm’s and individual’s problems and the
market clearing conditions:

kt+1 =
1

(1 + n)(1 + g)s[f
′(kt+1)][f(kt) − ktf ′(kt)]

▸ A steady state value of kt is some k∗ such that kt+1 = kt = k∗
satisfying the transition equation.
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A Brief Review of the Diamond Model (3 of 6)

Is the competitive equilibrium Pareto-efficient?

▸ We examined the efficiency of the competitive equilibrium by
comparing k∗ with kGR.
▸ To find kGR, write down the resource constraint for the Diamond

economy:

F (Kt,AtLt) = Ltc1t +Lt−1c2t + (Kt+1 −Kt)
▸ Let At = A for all t, the stationary resource constraint in per worker

term is:
f(k) − nk = c1

A
+ c2
A(1 + n)

▸ The golden-rule k maximises steady state consumption. Therefore,
kGR solves

max
k

f(k) − nk

i.e. kGR is determined by

f ′(kGR) = n
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A Brief Review of the Diamond Model (4 of 6)

▸ kGR can also be found by solving a social planner’s problem, which
chooses a stationary feasible allocation to maximise the welfare of
future generations:

max
c1,c2,k

U(c1, c2) s.t. f(k) − nk = c1 +
c2

1 + n

▸ The golden rule allocation is Pareto-efficient, since it maximises
future generations’ utility among all feasible allocations. All other
feasible allocations would give a lower welfare for future generations.
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A Brief Review of the Diamond Model (5 of 6)

▸ The equilibrium allocation may not be the golden-rule allocation.
Since k∗ may not equal kGR.
▸ If k∗ = kGR, the competitive equilibrium coincides with the golden-rule

allocation. Therefore, the equilibrium is efficient.
▸ If k∗ < kGR, there is under accumulation of capital. The equilibrium

allocation is Pareto-efficient.
▸ If k∗ > kGR, there is over accumulation of capital. The equilibrium

allocation is NOT Pareto-efficient, since a pay-as-you-go social security
would make all generations better off.
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A Brief Review of the Diamond Model (6 of 6)

▸ The inefficiency stems from the dynamic population structure of the
model-dynamic inefficiency.
▸ With finite horizon, the pay-as-you-go social security would hurt the

last generation’s welfare. i.e. it is not welfare improving over the
equilibrium outcome

▸ To summarise, if k∗ < kGR, the (stationary) competitive equilibrium (or
the balanced growth path) is dynamically efficient; if k∗ > kGR, the
(stationary) competitive equilibrium is dynamically inefficient.
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Rationale of RCK Model

▸ Problem with the Solow model: ad-hoc assumption of constant saving
rate.

▸ Will conclusions of Solow model be altered if saving is endogenously
determined by utility maximisation?
▸ Yes, but we will learn a lot about consumption/saving behavior by

analysing it.

▸ Basic setup of Ramsey model was described by Ramsey in 1928.

▸ Dynamics were developed by Cass and Koopmans in a growth context
in 1965.
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Basic Setup of RCK Model (1 of 3)

▸ Time is discrete and the time horizon is infinite, t = 0,1,2, ...
▸ Firms:

▸ Firms have access to a constant return to scale production function:

Yt = F (Kt,AtL
D
t ) (1)

The intensive form yt = F (k1,1) ≡ f(kt), where yt = Yt

AtLD
t
, kt = Kt

AtLD
t
.

f satisfies f ′ > 0, f ′′ < 0 (i.e. concave), limk→0 f
′(k) = +∞. There is

no depreciation of capital.
▸ Technology A grows at an exogenous rate g as in Solow-Swan model.

▸ Individuals:
▸ The economy is populated with a fixed number L of identical

individuals who live forever (i.e. no population growth).
▸ We will show the number of individuals is inessential, thus can

summarise individuals into representative individual.
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Basic Setup of RCK Model (2 of 3)

▸ Preference: An individual’s lifetime utility is given by:

U(c0, c1, ...) =
∞

∑
t=0

βtu(ct) (2)

▸ U is additively separable.
▸ The periodic utility function u satisfies u′ > 0, u′′ < 0 (i.e. concave),

and limc→0 u
′(c) = +∞.

▸ 0 < β < 1 is the discount factor.

▸ Endowment:
▸ Each individual is endowed with 1 unit of labour in each period, which

is supplied inelastically to firms.
▸ In addition, individuals are endowed with the initial stock of capital K0

equally, which they rent to firms and may augment through saving.

Lei Pan (Curtin) ECON4002: Advanced Macroeconomics 11 / 23



Basic Setup of RCK Model (3 of 3)

▸ Markets are perfectly competitive. Denote the real interest rate
(capital rental rate) and the wage rate per unit of effective labour in
period t as rt and wt, respectively.

▸ Initial conditions: K0, A0, L are given.
▸ Timing of events in period t:

▸ Firms hire labour and rent capital from individuals to produce output,
sell the output in goods market, and pay individuals.

▸ Individuals divide their wealth (labour income, capital income, and
remaining savings) into consumption and savings (holding capital),
then carry savings to period t + 1.
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Competitive Equilibrium (Solution) of RCK Model

▸ Conditions characterising firm’s profit maximisation:

rt = f ′(kt) (3)

wt = f(kt) − f ′(kt)kt (4)

▸ Individual’s utility maximisation:
▸ Denote ct and st as consumption and savings of an individual in period

t (notice that ct and st denote consumption and savings per worker).
▸ Then an individual’s budget constraint in period t is given by:

ct + st = wtAt + (1 + rt)st−1

For t = 0, s−1 = K0

L
, which are given.
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Individual Optimisation Problem (1 of 4)

▸ An individual chooses a sequence of savings to maximise his/her lifetime
utility, subject to budget constraints in each period, taking as given prices
and technology levels.

max
{st}∞t=0

U(c0, c1, ...) =
∞

∑
t=0

βtu(ct)

s.t. ct + st = wtAt + (1 + rt)st−1, t = 0,1, ... (5)

s−1 =
K0

L

▸ Note that we only need to solve for {st}∞t=0, then {ct}∞t=0 are determined
from the budget constraints:

c0 = w0A0 + (1 + r0)s−1 − s0
c1 = w1A1 + (1 + r1)s0 − s1
c2 = w2A2 + (1 + r2)s1 − s2
...
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Individual Optimisation Problem (2 of 4)

▸ This is a maximisation problem with infinite number of choice
variables {st}∞t=0 and infinite number of constraints. But it is not hard
to work out the FOC with respect to a specific st.

▸ Differentiate the objective function w.r.t. st:

∂U

∂st
=
∞

∑
t=0

βtu′(ct)
∂ct
∂st

▸ Notice that from the budget constraints, st only appears in ct and
ct+1:

ct = wtAt + (1 + rt)st−1 − st
ct+1 = wt+1At+1 + (1 + rt+1)st − st+1
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Individual Optimisation Problem (3 of 4)

▸ Therefore only ∂ct
∂st

and ∂ct+1
∂st

are nonzero. Then:

∂U

∂st
= βtu′(ct)

∂ct
∂st
+ βt+1u′(ct+1)

∂ct+1
∂st

= βtu′(ct)(−1) + βt+1u′(ct+1)(1 + rt+1) = 0

▸ From the above equation, we can obtain:

u′(ct)
βu′(ct+1)

= 1 + rt+1 (6)

▸ Eq.(6) is the consumption Euler equation, which has a similar form as
the Euler equation in the Diamond model. The individual’s problem is
characterised by Eq.(5) and (6) (budget constraint and Euler
equation).
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Individual Optimisation Problem (4 of 4)

▸ Substituting ct and ct+1 into the Euler equation (6) , we have:

u′(wtAt + (1 + rt)st−1 − st)
βu′(wt+1At+1 + (1 + rt+1)st − st+1)

= 1 + rt+1

▸ With s−1 is given, the optimal sequence of savings {st}∞t=0 must
satisfy the second-order difference equation above. Recall that in the
Diamond model, st is determined by:

u′(wtAt − st)
βu′((1 + rt+1)st)

= 1 + rt+1

which is one equation in one unknown: st
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Market Clearing Condition

▸ Labour market:
LD
t = L (7)

▸ Capital Market:
Kt+1 = Lst (8)
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Transition Equation (1 of 2)

▸ Need to combines conditions characterising firm’s problem, individual’s
problem and market clearing conditions (Eq.(3) to (8)) to derive transition
equations.

▸ Starting from market clearing condition for capital market: Eq.(8) implies
that

st =
Kt+1

L
= At+1Lkt+1

L
= At+1kt+1 = (1 + g)Atkt+1 (9)

▸ Substituting Eq.(3), (4) and (9) into the budget constraint (5), get:

ct + (1 + g)Atkt+1 = wtAt + (1 + rt)Atkt

ct = At[wt + (1 + rt)kt − (1 + g)kt+1]
ct
At
= f(kt) − f ′(kt)kt + (1 + f ′(kt))kt − (1 + g)kt+1

c̃t ≡
ct
At
= f(kt) + kt − (1 + g)kt+1 (10)

Notice that c̃t is the consumption per unit of effective labour. Then
ct = Atc̃t.
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Transition Equation (2 of 2)

▸ Substituting this expression and Eq.(3) into the Euler equation (6):

u′(Atc̃t)
u′(At+1c̃t+1)

= β[1 + f ′(kt+1)] (11)

▸ Eq.(10) and (11) are the transition equations of the system, which
describe how capital per unit of effective labour (kt) and consumption
per unit of effective labour (c̃t) evolve over time.
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Example

▸ Assume utility function is CRRA, then Eq.(11) becomes:

(Atc̃t)−θ
(At+1c̃t+1)−θ

= (At+1c̃t+1
Atc̃t

)θ = (1 + g)θ( c̃t+1
c̃t
)θ = β[1 + f ′(kt+1)]

( c̃t+1
c̃t
)θ = β[1 + f ′(kt+1)]

(1 + g)θ (12)

▸ For CRRA utility function, the transition equations are Eq.(10) and
(12).
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Steady State (1 of 2)

▸ A steady state of kt and c̃t, denoted as k∗ and c̃∗, satisfy:

c̃∗ = f(k∗) + k∗ − (1 + g)k∗ = f(k∗) − gk∗ (13)

(1 + g)θ = β[1 + f ′(k∗)] (14)

▸ Notice that Eq.(13) and (14) determine a unique steady state value,
k∗ and c̃∗. Recall that in the Diamond model with CRRA utility,
there may be multiple values of k∗ (i.e. multiple steady states).

▸ The convergence to the steady state is saddle path stable (to be
discussed on next lecture).
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Steady State (2 of 2)

▸ Again, once kt and c̃t converge to their steady states, the economy
reaches its stationary equilibrium, or balanced growth path.
▸ Prices rt and wt are constants. The saving rate (Lst

Yt
= st

Yt
L

) is a

constant.
▸ Real wage rate per worker, capital per worker and output per worker

grow at rate g.
▸ Individual’s consumption and saving in a period (ct = Atc̃

∗,
st = Kt+1

L
= (1 + g)Atk

∗) grow at rate g.

▸ Notice that L is inessential to our analysis, thus can be normalised to
1, i.e. can summaries individuals into a single representative individual
(or consumer,or household) in the RCK model. That is why such
models are called representative agent models.
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